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ABSTRACT

NASHUA is a coupled finite element/boundary element capability built around

NASTRAN for calculating the low frequency far-field acoustic pressure field radiated or

scatlexed by an arbitrary, submerged, three-dimel_sional, elastic structure subjected to eilhcr

internal time-harmonic mechanical loads or external time-harmonic incident loadings. This

paper describes the formulation and use of NASHUA for solving such structural acoustics

problems when the structure is fluid-filled. NASTRAN is used to generate the structural

finite element model and to perform most of the required matrix operations. Both fluid

domains are modeled using the boundary elemen! capabililty in NASHUA, whose matrix

formulation (aud the associated NASTRAN DMAP) for evacuated structures Call be used

with suitable interpretation of the matrix definitious. After computing surface pressures and

normal velocities, far-field pressures are evahmled using an asymptotic form of the
Hehnholtz exterior integral equation. The proposed numerical approach is validated by

comparing the acoustic field scattered from a submerged fluid-filled spherical thin shell to

that obtained with a series solution, which is also derived in this paper.

INTRODUCTION

Two basic problems in computational structural acoustics are (1) the calculation of the
aconstic pressure field radiated by a general submerged three-dimensional elastic structure

subjected to internal time-harmonic loads, and (2) the calculation of the acoustic pressure

scattered by such a structure subjected to all incident time-harmonic wavetrain. The most

common, as well as the most accurate, approach for solving these problems at low

frequencies is to couple a finite clement model of the structure with a boundary element

model of the surrounding fluid. This is the approach taken by NASHUA, which is a

boundary element program built around NASTRAN, a widely-used finite element computer

program for structural dynamics.

Several previous papers (Rcf. 1-4) described the basic formulation and development for

acoustic radiation and scattering from evacuated structures. Ilere we describe the

formulation and use of NASHUA for modeling submerged slructures which are fluid-filled.
Internal fluid can occur because the structure is frce-ltooded or contains fluid-filled tanks. It

is possible to use existing NASTRAN capability to model the interior lhlid with finite

elements (Ref. 5-7), but three-dimensional models with largc nulnbers of lhlid degrees of

freedom might resnlt. An attraclivc altcrnativc to the lluid finite element model is to

represent the contained thiid using a boundary ClClnCnt approach. In principle, any computcr
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program capable of generating the appropriate boundary element matrices for all exterior

fluid is also capable of generating such matrices for the complementary region (the interior

region). NASTRAN's versatility in user-controlled matrix operations (DMAP) makes the

implementation of such an approach straightforward.

THEORETICAL APPROACH

The basic theoretical development for NAStIUA's radiation and scattering approach

for evacuated structures has been presented in detail previously (Ref. 1-4). For

completeness, this paper summarizes that approach and describes the changes necessary to
model the interior lluid with boundary elements in the same procedure. There is no

requirement that the interior and exlcrior lluids be the same.

The Surface Solutio. for Evacuated Structures

Consider any submerged three-dimensional, evacuated clastic structure subjected to
either internal time-harmonic loads or an external time-harmonic incident wavetrain. If the

structure is modeled with tinite elements using NASTRAN, the resulting matrix equation of
motion can be written as

Zv = F - GAp, (1)

where matrix Z (of dimension s x s) is the structural impedance, vector v (s x r) is the

complex velocity amplitude for all structural DOF (wet and dry) using the coordinate systems

selected by the user, vector F (s x r) is the complex amplitude of the mechanical forces

applied to the structure, matrix G (s x f) is the rectangular transformation of direction

cosines to transform a vector of outward normal forces at the wet points to a vector of

forces at all points in the coordinate systems selected by the user, matrix A (f x f) is the

diagonal area matrix for the wet surface, and vector p (f x r) is the complex amplitude of

total pressures (incident + scattered) applied at the wet grid points. In this equation, the

time dependence exp(icvt) has been suppressed. In the above dimensions, s denotes the total
number of independent structural I)OF (wet and dry), f denotes the number of fluid DOF

(wet points), and r denotes the number of load cases. In general, the surface areas, the
normals, and the transformation matrix G are obtained in NASHUA from the NASTRAN

calculation of tile load vector resulling from an outwardly directly static unil pressure load on
the structure's wet surface.

In Eq. 1, the structural impedance matrix Z, which converts velocity to force, is given

by

Z = (-co2M + ia.,B + K)/(icJ), (2)

where M, B, and K are the structural mass, viscous damping, and stiffness matrices,

respectively, and c_,is the circular frequency of excitation. For structures with a nonzero loss

factor, K is complex. In addition, K can illclude the differential stiffness effects of

hydrostatic pressure, if any (Rcf. 3). A standard NASTRAN finite element ,nodel of tile

structure supplies the matrices K, M, and B.

For the exterior fluid domain, the total l]uid pressure p satisfies the Ilelmholtz

differential equation
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Vep+k2p = 0, (3)

where k = w/c is the acoustic wave number, and c is the fluid sound speed. Equivalently, for

the exterior fluid, p is the solution of the Helmholtz integral equations (Ref. 8)

fs p(x)_dS --fs q(x)D(r)dS

p(x')/2- PI, x' on S,

p(x') --PI, X' in E,
-PI, x' ill I,

(4)

where S, E, and I denote the surface, exterior, and interior domains, respectively, PI is the

incident free-field pressure (it" ally), r is the distance from x to x' (Fig. 1), D is the free-space
Green's function

e-ikr

D(r)- 4rrr ' (5)

q __ Or, = -iccpv., (6)
0n

FLUID

Fig. 1. Notation for Helmholtz Integral Equation

p is the fluid mass density, and v n is the outward normal velocity on S. As shown in Fig. 1, x

in Eq. 4 is the position vector for a typical point Pj on the surface S, x' is the position vector
for the point Pi on the surface or in the exterior field, the vector r = x' - x, and n is the unit

outward normal at Pj. We denote the lengths of the vectors x, x', and r by x, x', and r,
respectively. The normal derivative of the Green's function D is (Ref. 1)

OD(r) e-ikr (ik + 1)- cos 3, (7)
0n 4n-r r

where 3 is the angle between the normal n and the vector r, as shown in Fig. 1.

All three integral equations in Eq. 4 are needed for exterior fluids. The surface

equation provides the fluid impedance at the fluid-structure interface. Since the surface
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equation exhibits non-uniqueness at certain discrete characteristic frequencies (Ref. 9), the

interior equation is used to provide additional constraint equations which ensurc the required

uniqueness. The exterior equation is used to compute the exterior pressure field once the

mrface solution (which includes the fluid pressure and its gradient) is known.

The substitution of Eqs. 6 and 7 into the surface equation (4) yields

c-ikr (ik + 1__) e -ikr
2 --_ p(x)--4rcr r cos /3dS = icvPfs, vn(x )--_dS + PI, x' on S. (8)

This integral equation relates lhe total pressure p and normal velocity v, on S. If the

integrals in Eq. 8 arc discrelized for numerical computation (Ref. 1), we obtain lhe matrix
equation (for the exterior lhlid)

Ep = Cv, + Pl, (9)

where vector p (of dimension f x r) is the vector of complex amplitudes of the total pressure
on the structure's wet surface, matriccs E and C (both f x f) are fully-populalcd, conzpicx,

nonsymmctric, and frequency-dependent, and vector PI (f x r) is the complex alnpliludc of

the incident pressure vector. The number of tlnknowns ill this system is f, lhc numbcr of

wet points on the fluid-structtlre interface.

The normal velocities vi_ in Eq. 9 are related to the total velocities v by tile same

rectangular transformation matrix G:

Vn = GTv, (10)

whereT denotes the matrix transpose. If velocities v and vn are eliminated from Eqs. l, 9,

and 10, the resulting equation for the coupled fluid-structure system is

(E+CGrZ-IGA) p = CGTZ-IF+pl. (11)

Tiffs equation is solved for tile total surface pressures p, since tile rest of the equation

depends only on the geometry, the material properties, and lhe frequcncy. Since the two

right-hand side terms in Eq. 11 correspond to mechanical and incident loadings, only one of

the two terms would ordinarily be present for a given case. The details of lhe incident

pressure vector Pl for scattering problems were presented previously (Rcf. 2)and will not be

repeated here.

The velocity vector v for all structural DOF is recovered by solving Eq. 1 for v:

v = Z-IF -- Z-1GAp. (12)

Tile surface normal velocity vector v n is recovered by substituting this solntion for v into Eq.
10.

Modeling Interior Fluid

Tile theoretical development presented in the preceding section can be modified slighlly

to account also for an interior lluid. The wave equation, l(q. 3, applies also to interior lluids.

Although all three integral cqualions in l_q. 4 are generally needed for exterior fluids, only

tile surface equalion is nccded It) represent the surface impedance of inlcrior lluids. Eq. 4a

also applies to interior fluids if lhc incident pressure PI is set to zero, and the normal vector

n is negated. That is, the surface integral cquation applies to both extcrior and intcrior fluids

153



so long as the unit normal is always directed from the structure into the fluid. One other

consideration, perhaps unique to NASHUA, is that wet surface curvatures (which are

needed in the calculation of the "self" terms in matrix E) are negative at some interior points
(Ref. 1).

A matrix equation similar to Eq. (9) is therefore obtained for the interior fluid except
that the incident pressure PI is zero. The thfid matrices E and C are different for exterior

and interior domains (even if the separating surface S has infinitesimal thickness) because

the normals are of opposite sign.

Two-Fluid Formulation

Denote the exterior fluid as Fluid 1 and the interior fluid as Fluid 2, and use the

subscripts 1 and 2 to refer to these two domains. Also define new pressure and normal
velocity unknowns p and vn which include the solutions for both fluid domains:

{Pl} /VnllP = P2 ' Vn = - (13)tVn'-J

Since there is no direct fluid coupling between the interior and exterior fluids, and the

incidcnt pressure vanishes in the interior domain, Eqs. 1, 9, 10, and 11 apply also to the
two-fluid problem if the new definitions in Eq. 13 are used, and the matriccs A, G, E. C,
and PI are re-defined as

A= [A1 ] G= [GIG2] E= [El ] C= [el ] {P_I}A2 ' ' E2 ' C2 ' PI = . (14)

The principle benefit of formulating the two-fluid problem in this way is that the required
modifications to extend the procedure to three or more independent fluid domains is now
clear.

The Far-Field Calculation

With the solution for the total pressures and velocities on the surface, the exterior

Helmholtz integral equation, Eq. 4b, can be integrated to obtain the radiated (or scattered)

pressure at any dcsircd location x' in the exterior field. We frst substitute Eqs. 5 - 7 into Eq.
4b to obtain

e-ikr

p(x') = fs [i_',0Vn(X) + (ik + 1)p(X)r cos /3] _ dS, x' in E. (15)

In applications, howevcr, the field prcssures generally of interest are in the far-ficld, so we

use instead the asymptotic form of Eq. 15 (Ref. 1):

ik e-ikx_.......m'
p(x') - 4_x' fs [pcvn(x) + p(x) cos/_]e _k_cos _ dS, x' in E, x' >> d, (16)

where d is a characteristic dimension of the structure, and ct is the angle between the vectors

x and x' (Fig. 1). For far-field points, cos fl is computed using the asymptotic approximation

154



X I

cos/3 --+ n'-- (17)
X I

For both Eqs. 15 and 16, numerical quadrature is used.

OVERVIEW OF SOLUTION PROCEDURE

The NASHUA solution procedure uses NASTRAN to generate the matrices K, M, B,

and F and to generate sufficient geometry information so that the matrices E, C, G, A, and

PI can be computed by a separate program called SURF. Then, NASTRAN DMAP is used

to form the matrices appearing in Eq. 11, which is solved for the total pressures p (in both

fluid domains) using the block solver OCSOLV (Ref. 10). Next, NASTRAN DMAP is used

to recover the surface normal velocities v n and the vector v of velocities at all structural

DOF (NASTRAN's "g-set"). This step completes tile surface solution. Then, with the total

pressures and velocities on the (exterior) surface, the asymptotic (far-field) form of the

Helmholtz exterior integral equation is integrated in program FAROUT to compute the far-

field radiated pressures. Various tables and graphical displays are generated.

The overall setup of the solution procedure is organized into four steps. In Step 1, a

separate NASTRAN structural model is prepared and run for each unique set of symmetry

constraints and each fluid region. Since, for general three-dimensional analysis, up to three

planes of reflective symmetry are allowed, there would be one, two, four, or eight such runs

for each fluid region. Since thc purpose of this step is to generate a file containing geometry

information and a checkpoint file for subsequent use in the other steps, the only difl'erence

between the two runs associated with a given symmetry case is the specification of the

outwardly directed unit pressure load which defines the wet surface for a given lluid region.

For each symmetry case and drive frequency, several programs are run sequentially to

form Step 2. For each fluid region, the SURF program reads the geometry file generated by

NASTRAN in Step 1 and, using the tlelmholtz surface and interior integral equations,

generates the fluid matrices El, E2, C1, and (?2, the area matrices A 1 and A2, the structure-

fluid transformation matrices G1 and G2, the incident pressure vector Pn, and a geometry

file to be used later by the far-field integration program FAROUT in Step 3. In addition, a

partitioning vector is generated to facilitate the merging and partitioning of the various
matrices associated with the two fluid domains.

The two SURF jobs in Step 2 are followed by a NASTRAN job which takes the

structural matrices K, M, B, and F from Slep 1 and the matrices generated by the SURF

jobs and forms the matrices in Eq. 11, where the definitions in Eq. 14 apply. Eq. ll is then

solved for the total surface pressure vector p by program OCSOI,V, which is a general out-

of-core block solver designed specifically for large, full, complex, nonsymmetric systems of

linear, algebraic equations. NASTRAN is then re-entered in Step 2 with p so that the

velocities v and vn can be recovered using DMAP operations. The surface pressures,

normal velocities, and full g-set displacelnents are then reformatted, sorted, and merged into

a single file (for each symmetry case) using program MERGE. Recall that there are one,

two, four, or eight possible symmetry cases.

Steps 1 and 2 are repeated for each symmetry case. After all symmetry cases have

been completed and merged, program FAROUT (Step 3) combines the symmetry cases and

integrates over the surface. The far-field pressure solution is oblained by inlegrating the
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surface pressures and velocities using the asymptotic (far-field) form of the exterior

Helmholtz integral equation, Eq. 16. Output from FAROUT consists of both tables and files

suitable for various types of plotting.

The remaining steps in the NASIIUA procedure are for graphical display. Deformed

structural plots of the frequency response are obtained by restarting NASTRAN (Step 4)

with the checkpoint file from Step 1 and a results file from FAROUT. In addition, animated

plots can be generated on the Evans & Sutherland PS-330 graphics terminal using the

CANDI program written for the I)EC/VAX computer by R.R. Ifipman of DTRC (Ref. 11).

X-Y plots of various quantities (both surface and far-field) versus frequency may be obtained

using IPLOT or other interactive plotting programs (Ref. 12). Polar plots of the far-field

sound pressure levels in each of the three principal coordinate planes can also be generated

using the interactive graphics program I:AFPI_OT (Ref. 1).

DMAP ALTERS

Several I)MAP alters are used ill the overall NASHUA procedure to implement the

preccdure described in prcceding section. For Step 1, the following alter is used:

AI A'ER

ALTER
ALTER

GP3
AI,TER

SSGI

SSG2

OUTPUT2
OUTPUT2

OUTPU'F2

PARAMR

COND

PARAMR

DIAGONAL

ADD

RBMG2

SSG3

S DR 1

"FA 1

I)SMG l

EQUIV

CONI)
MCE2

I,ABH,

1-QUIV
CONI)

1 $ NASttUA STEP 1, COSMIC 1988 RF8 (REVISED 12/7/89)
2,2 $ I)ELETE PRECHK

21,21 $ REPLACE GP3

GEOM3,EQEXIN,GEOM2/SLT,GPTT/S,N,NOGRAV/NEVER=I $

117,117 $ REPI,ACE FRRI)

SLT, BGPDT,CSTM,SIL,EST,MPT,GPTT,EDT,MG (LCA SECC,DIT,/

PG .... /LUSETINSKIP $ PG

USET,GM,YS,KFS,GO,DM,I_GIQR,PO,PS,PL $ PL

AXIC,BGI'DT,EQt'_XI N,USET,I'G $

PL,CSTM,ECT,, $

.... 11-9 $

II*EQ*I/C,Y,IISP=O./O.////NOHSI" $

LBL4D,NOIISP $ SKIP DIFF. STIFF. IF NO HYDRO. P

I/*COMPLEXI/C,Y,IISP=O./O./HSPC $ IISP+I*0
KAA/KDIAG/* SQUARE*/1.0 $

KAA,KDIAG/KAAD/(1.0,0.0)/(1.E-6,0.) $
KAAI)/LLL $ FACTOR KAA

IdA,,KAAD,PL,LOO,KOO,PO/ULV,UOOV,RUI_V,I_UOV/OMIT/
V,Y,IRES=-I/IlS,N,EPSI $ STATIC SOLUTION

USET,PG,UI,V,UOOV,YS,GO,GM,PS,KFS,KSS,/UGV,PGG,QG/I/

*BK1.0* $ RECOVER DEPENDENT DISPLACEMENTS

ECT,EPT,BGPDT,SIL,GPTT,CSTM/X1,X2,X3,ECPT,GPCT/I,USET/
NOSIMI'/0/NOGFNI,/GENEL $ TABLES FOR DIFF. STIFF.

CASECC,GI_I_I',SII,,EI)T,UGV,CSTM,MPT,I;CH',GPCT,D1TIKI)GG/

S,N,DSCOSET $ DIFF. STIFF. MATRIX

KI)GG,KDNN/MPCF2 / MGG,MNN/MPCF2 $ EQUIV IF NO MPC'S

L1HAI),MPCF2 $ TRANSFH( IF NO MPC'S

USET,GM,KI)GG,,,IKDNN,,, $ MPC'S ON DIFF. STIFF.
I,BLID $

KI)NN,KI)IqVSINGLE / MNN,MFF/SINGI,E $ EOUIV. IF NO SPC'S

I,IH21),SINGI,E S TRANSFER 1F NO SPC'S
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SCE1
LABEL

EQUIV

COND

SMP2

LABEL

PARAMR

ADD

ADD

EQUIV

LABEL

DIAGONAL

ADD

ADD

FRRD

CHKPNT
CHKPNT

EXIT $

ENDALTER $

USET,KDNN,,,/KDFF,KDFS,KDSS,,, $ SPC'S AND DIFF. STIFF.
LBL2D $

KDFF,KDAA/OMIT / MFF,MAA/OMIT $ EQUIV. IF NO OMITS
LBL3D,OMIT $ TRANSFER IF NO OMITS

USET,GO,KDFF/KDAA $ OMITS AND DIFF. STIFF.
LBL3D $

//*SUBC*////MHSPC//HSPC $ NEGATE HYDRO. P

KDD,KDAA/NEWKDD/(1.0,0.0)/MHSPC $

KFS,KDFS/NEWKFS/(1.0,0.0)/MHSPC $

NEWKDD,KDD//NEWKFS,KFS $

LBL4D $ END OF DIFF. STIFF. EFFECTS (HSP)
KDD/IDENT/*SQUARE*/0. $ D-SET IDENTITY

IDENT,/IDM/(1.0,0.0) $ ANOTHER D-SET IDENTITY

IDENT,/ZERO/(0.0,0.0) $ D-SET ZERO MATRIX

CA SEXX,USETD,DLT,FRL,GMD,GOD,IDENT,ZERO ,IDM, ,DIT/

UDVF,PSF,PDF,PPF/*DISP*/*DIRECT*/LUSETD/MPCF1/

SINGLE/OMIT/NONCUP/FRQSET $ PDF, KDD=I, BDD=0, MDD=i

MDD,KDD,BDD,PDF,PSF,PPF,EQDYN,USETD,GOD,GMD $

KFS,BGPDT,ECT,EQEXIN,GPECT,SIL $

The above alter does not depend on whether the fluid is interior or exterior to tile structure.

The Step 2 alters, however, depend on whether an interior fluid is present. For Step 2A, the
following alter is used:

ALTER
ALTER

INPUTT2

INPUTT2

MATPRN

PARAML

PARAMR

COND

PARAMR
COND

INPUTT2

OUTPUT2

OUTPUT2

CHKPNT

EXIT

LABEL

INPUTT2

TRNSP

ADD

OUTPUT2

OUTPUT2

CHKPNT

EXIT

LABEL

INPUTT5

1 $ NASHUA STEP 2A, COSMIC 1988 RF8 (REVISED 11/7/89)
2,167 $ REPLACE ALL AFTER 'BEGIN' AND BEFORE 'END'

/DAT2 .... //13 $ INTERNAL FLUID

/DAT .... //11 $ READ SURF MATRIX FROM UT1

DAT,DAT2,,, $

DAT//*DMI*/1/8/RIGD $ GET RIGID FLAG

//*EQ*//RIGD/O.////ELAST $ SET ELAST=-I IF ELASTIC

LBL9D,ELAST $ IF ELASTIC, JUMP OVER RIGID/SOFT
//*EQ*//RIGD/2.////SOFT $ SET SOFT=-I IF SOFT BD.

LBL9E,SOFT $ IF SOFT BOUNDARY, JUMP OVER RIGID
/E,PI,VEKC,,//ll $ READ SURF MATRICES FROM UT1

PI,E,,,//-1 $ INPUTT2 FILE IS OVER-WRITTEN (UTI)
.... //-9 $ EOF

DAT,VEKC $

$

LBL9E $ BEGINNING OF SOFT ANALYSIS

/CT,PI,VEKC,,//ll $ READ SURF MATRICES FROM UT1
CT/C $

PI,/MPI/(-1.0,0.0) $ NEGATE PI

MPI,C,,,//-1 $ INPUTT2 FILE IS OVER-WRITFEN (UT1)
.... //-9 $ EOF

DAT,VEKC $
$

LBL9D $ BEGINNING OF ELASTIC ANALYSIS

/G2,A2,,,//14 $ INTERNAL FLUID
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INPUTT2
INPUTT5

INPUTT2

MATPRN

MERGE

MERGE

MERGE

MERGE

MERGE

MATPRN

PARAMI,

PARAMR

PARAMR

PARAMR

PARAMR

PARAMR

AI)D5

MPYAD

DECOMP

I:BS

FBS

ADD

ADD

MPYAD

MPYAD

MPYAD

MPYAD

MERGE

MERGE

MERGE

EQUIV

MERGE

MI';RGE

MERGE

ADD

EQUIV

OUTPUT2

OUTPUT2
CIIKPNT

CIIKPNT

I:NDAI,TER

/C2T,E2,PI2,VEKC2,//13 $ INTERNAL FLUID

/G1,Al,,,//12 $ READ SURF MATRICES FROM UT2

/C1T,E1,PI1,VEKC,FVEC//ll $ READ SURF MATRICES

FVEC .... $

AI,,,A2,FVEC,/A/-1 $

EI,,,E2,FVEC,/E/-1 $

C 1T,,,C2T,FVEC,/CT/-I $

GI ,,G2,,FVEC,/G/O $

PI 1 ..... FVEC/PI/O $

VECM,VECS,,, $
DAT//*DMI*/I/2/FREQ $ GET FREQ FROM DAT

//*COMPLEX*//FREQ/O./FREQC $ FREQ+I*0

//*MPYC*////W/FREQC/(6.283185,0.) $ OMEGA

//*MPYC*////IW/W/(O.,1.) $ I*OMEGA
//*MPYC*////WW/W/W $ OMEGA**2

//*SUP, C*////MWW//WW $ -OMEGA**2

MDD,KDD,BDD,,/YIMWW/(1.O,O.O)/IW $

G,A,/GA/O $

Y/I,,U/I//S,N,MINDIAG///S,N,SING $

I.,U,GA/YIGA/I $

I.,U,PDF/YIF/1 $

YIGA,/ZIGA/IW $

YIF,/ZIF/IW $

G,ZIGA,/GTZIGA/1 $

CT,GTZIGA,E/I1/1 $ LHS

G,ZIF,/GTZIF/I $

CT,GTZIF,/Q/I $ MI;('IIANICAL RIlS

I)UM,,PDF,,VECM,/I'DF1/1 $ MERGE IN 0 COLUMNS
DUM,,PSF,,VECM,/PSF1/I $ MERGE 1N 0 COLUMNS

DUM,,PPF,,VECM,/PPF1/1 $ MERGE IN 0 COLUMNS

PDF I,PDF//PSF l ,PSF//PPF1,PPF $

DUM,,Q,,VECM,/RIIS1/1 $ MERGE IN ZERO COLUMNS

DUM,,GTZIF,,VECM,/GTZIFE/I $ MERGE IN 0 COI.UMNS

DUM,,PI,,VECS,/RIIS2/1 $ MERGE IN ZERO COI.UMNS

RI1S1,RttS2/RHS $ ADD MECH. AND INC. RHS

USETD,DUM1//GOD,DUM2//GMD,DUM3//KFS,DUM4 $

RtlS,II,,, //-1 $ INPU'IT2 FILE IS OVER-WI_.ITI'EN (UTI)

.... //-9 $ EOF

GTZIGA,GTZIFF.,GA,PDF,I.,U,PSF,I)AT,VEKC,FVEC $

USF.TI),GO1),GMD,KFS $

$

The differenccs bclwcen this alter and one used for submerged evacuated structures are due

to tile need to read and combine two sets of SURF matrices, one for each fluid domain. For

Step 2B, lhe following alter is used:

AI.TER

AI,TF.R

INPUTT2

I'A RTN

I'ARTN

1 $ NASHUA STEP 2B, COSMIC 1988 RF8 (REVISEI) 11/7/89)

2,167 $ REPLACE ALL AFTER 'BEGIN' AND BEFORE 'END'

/PC .... //11 $ READ PRI:.SSURES FROM BLOCK SOLVER (UT1)

I'C,,FVF.C/PI,,,/O $ REMOVE INTERNAl. FLUID DOE

I'1 ,,VI'K(;/I',,,/O $ REMOVE CI[IEF DOF FROM P
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COND

OUTPUT2

OUTPUT2

MATPRN

EXIT

LABEl.
MPYAD

MPYAD

FBS

SDR1

PARTN

PARTN

OUTPUT2

OUTPUT2

MATPRN

ENDALTER

LBL9D,EI.AST $ IF EI,ASTIC, JUMP OVER RIGID/SOFT

DAT,P,,, //-1 $ INPUTT2 FILE IS OVER-WRITTEN (UT1)

.... //-9 $ EOF
DAT,P,,, $ FOR SOFT BOUNDARY, P RF, PRESENTS VELOCITY

$
LBL9D $ ELASTIC ANALYSIS

GTZIGA,PC,GTZIFE/VNC/O/-1 $ NORMAI J VEI,O(TFIES

GA,PC,PDF/FA/O/-1 $ A-SET FORCES
L,U,FA/UDVF/1 $ A-SET DISPLACEMEN'FS

USETD,,UDVF,,,GOD,GMD,PSF,KFS,,/UPVC,,QPC/I/

*DYNAMICS* $

VNC,,FVEC/V1,,,/O $ REMOVE INTERNAL FI,UI1) I)OF

V1,,VEKC/VN,,,/O $ REMOVE CHIEF I)OF FROM VN

DAT,P,VN,UPVC, //-1 $ INPUTT2 FII3" IS OVEI_.-WRITTF.N

.... //-9 $ EOF

DAT,P,VN,, $
$

This alter differs from olle for evacuated structures because of the presence of several matrix

partitionings to remove the internal fluid DOF from the solution vectors before the solutions

are merged with the results for other frequencies.

NUMERICAL EXAMPLE

Here we illustrate and validate the two-fluid boundary element formulation developed

above by solving the problem of acoustic scattering from a submerged fluid-filled spherical

thin shell. The incident loading is a time-harmonic planar wavetrain, as shown in Fig. 2.

The specific problem solved has the following characterislics:

shell mean radius (a)

shell thickness (h)

shell Young's modulus (E)

shell Poisson's ratio (u)

shell density (p_)

shell loss factor (r/)

fluid density (p)

fluid sound speed (c)

5 111

0.15 m

2.07 x 10 It N/m e
0.3

7669 kg/m 3

0.01

1000 kg/m 3

1524 m/s

The same lluid is used for both the exterior and interior lluid domains. The solution of this

problem exhibits rotational symmetry about the spherical axis parallel to the direction of

wave propagation. The benchmark solution to which the numerical results will be compared

is a series solution, the derivation of which is summarized in the next section.

Series Solution

The series solution for scattering from a submerged cwlcuated spherical thin shell was

presented by Junger and Felt (Ref. 13). Here wc summarize Ihal solution and indicate the

modificalion necessary to include the addition of an interior lluid which fills the spherical
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Fig. 2. Plane Wave Scattering from a Fluid-Filled Spherical Shell

In general, the series solution for plane wavc scattering from a submerged, ewlcuated,
spherical thin shell involves computing the impedances of the shell and exterior fluid, the

scattered field due to rigid body effects, and the radiated field due to elastic (vibrational)
to normal velocity) for the ntheffects. The shell impedance (the ratio of pressure

axisymmetric shell mode is

Zn _= iPsCp h [_2-(__(nl))2] [_2--(_'_(n2))2]

a '

where Ps is the structural mass density, Cp ='X/E/[ps(1-t.,2)]

(18)

, E is Young's modulus, u is

Po]sson s raho, f'/= c_a/Cp is dmlenslonless frequency, 11 is the shell thickness, a is the
shell mean radius, fl=h/(aV_12), and Xn =n(n+l). The quantities f2_1) and f2(2) are the

upper and lower shell resonance dimensionless frequencies, respectively. They are the
solutions of the characteristic equation

_2a _ [l+3u+>,n-fl2(1-U-Xn--UX,_] f't2

+ ()Xn--2)(1--r'2)+/32[Xn3--4_,n2+X(5--t-'2)--2(l--t-'2)] : 0. (19)

The impedance of the extcrior fluid, found by using the Green's fimclion and identity for the
exterior fluid, is

hn(ka)

z n = ipc h,n(ka ) , (20)

where hn is the Bessel's function of the third kind of order n.

Thus, Junger and Feit showed that the far-field scattered pressure is
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ieikRpo (2n+l)Pn(COS0) [ pC

p(R,0)=- kI---_ _ h'n(ka) [j'n(ka)-- , R>>a, (21),1=0 (Z n+z n) (ka)2 h'n (ka)

where R is the distance to the field point, 0 is the angle from the z-axis, Po is the incident

pressure, Pn is the Legendre polynomial of order n, and Jn is the Bessel's function of the first
kind of order n. The two terms in the bracketed expression correspond to rigid body and

radiated effects, respectively.

The above expression for the pressure scattered from an evacuated shell call be
extended to inclnde the effects of the interior fluid merely by replacing the exterior fluid

impedance Zn ill Eq. 21 with the sum of the fluid impedances for the exterior and interior

fluids. It Call be shown, by using the Green's function and identity for the interior domain,

that the interior impedance, denoted f,1, is given by

j,l(ka) (22)
g,_ = - ipc j,n(ka ) .

We note the resemblance between Eqs. 20 and 22 for the exterior and interior domains,

respectively.

The computer program used to evahmte this series solution is a modification of a

program called SCATSPHERE written by F.M. Henderson, a retired employee of DTRC.

SCATSPHERE in turn is a variant of an earlier program called RADSPHERE (Ref. 14) for

computing the radiation from an internally-driven submerged spherical shell.

Numerical Solution

A NASTRAN finite element model of the spherical shell was prepared using 40

axisymmetric conical shell elements spalming the 180 degrees between the two poles of the

sphere. Due to the axisymmetry of the incident pressure loading, only the N = 0 harmonic

was required. Since all structural points are in contact with both interior and exterior fluids,

the resulting model therefore had 205 independent structural degrees of freedom (DOF) and

41 lluid DOF for each of the two fluid domains. System matrices for the exterior fluid were

also augmented by the addition of four constraint equations associated with interior Chief

points to ensure uniqueness of the integral representation at the upper frequencies. The

nondimensional frequency range 0<ka<5 was swept using a frequency increment of about ka
= 0.05 with NASHUA and ka = 0.005 with the series solution. Since the series solution is

converged, we treat it as an "exact" solution for this problem.

The comparison between the computed and exact solutions is presented is Figs. 3 and
4, which plot the frequency response of the lmndilnensional scattered pressure pr/(poa),

where p is the far-field scattered pressure at distance r from the origin, Po is the incident

pressure, and a is the mean radius of the spherical shell. These two figures show very good
agreement between the two scattering sohltions in the backward (0 = 0) and forward (0 = 180

degrees) directions. In fact, the computed and series solntions are virtually illdistillguishable
from each other.
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Fig. 3. Forward Scattering from a Fluid-Filled Spherical Shell
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Fig. 4. Backward Scattering from a Fluid-Filled Spherical Shell

DISCUSSION

A very general computational capability has been described for predicting the sound

pressure [ield radiated or scattered by arbitrary, submerged, fluid-filled, lhree-dimensional
clas|ic structures subjcctcd to timc-harnlonic loads. Thc structure is modeled with

NASTRAN (in all the generality lhal NASTRAN allows) in combination wilh botmdary
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element models of both interior and exterior fluid domains. Sufficient automation is

provided so that, for many structures of practical interest, an existing structural model can

be adapted for NASHUA acoustic analysis within a few hours.

One of the many benefits of having NASHUA linked with NASTRAN is the ability to

integrate the acoustic analysis of a structure with other dynamic analyses. Thus the same

finite element model can be used for modal analysis, frequency response analysis, linear

shock analysis, and underwater acoustic analysis. In addition, many of the pre- and

postprocessors developed for use with NASTRAN become available for NASHUA as well.
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